django-html5-appcache Documentation
Release 0.3.1

lacopo Spalletti

November 16, 2013

Contents

1 Install
1.1 Installation
1.2 Advanced configuration
1.3 Changelog
2 Usage
2.1 BasicConcepts v v vt
2.2 Enabling caching in your application
23 djangoCMS
2.4 Excluding urls fromthecache
25 Webinterface oL
2.6 Commandlineusage

3 Indices and tables

3.1 Autodoc

Python Module Index

AN WW

django-html5-appcache Documentation, Release 0.3.1

This document refers to version 0.3.1
Application to manage HTMLS5 Appcache Manifest files for dynamic Django web applications.

While handy and quite simple in its structure, manifest files is quite burdensome to keep up-to-date on dynamic
websites.

django-html5-appcache try to make this effortless, exploiting the batteries included in Django to discover
pages and assets as they are updated by the users.

See Basic Concepts for further details.

Contents 1

http://en.wikipedia.org/wiki/Cache_manifest_in_HTML5

django-html5-appcache Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Install

1.1 Installation

1.1.1 Requirements

* django>=1.4
e 1xml

e html51ib

1.1.2 Installation

To get started using d jango-html5-appcache install it with pip:

$ pip install django-html5-appcache

If you want to use the development version install from github:

$ pip install git+https://github.com/nephila/django-html5-appcache.git#egg=django—html5-appcache

Requirements will be automatically installed.
Run migrate command to sync your database:

$ python manage.py migrate html5_appcache

Warning: Migrations have been added in 0.3.0. Don’t skip this if you are upgrading from 0.2.

1.1.3 Basic configuration

* Add html5_appcache to INSTALLED_APPS.

* Include in your URLCONF:

django-html5-appcache Documentation, Release 0.3.1

urlpatterns += patterns(’’,
url (""", include (’html5_appcache.urls’)),
)

Warning: on Django 1.4+ (or django CMS 2.4+) you may need to use 118npatterns instead of patterns
above, depending on you project layout.

» Enable appcache discovery by adding the lines below in urls.py:

import html5_appcache
html5_appcache.autodiscover ()

¢ Add the middleware just below django.middleware.cache.UpdateCacheMiddleware, if used, or
at the topmost position:

"html5_appcache.middleware.appcache_middleware.AppCacheAssetsFromResponse’

* Insert appcache_1link template tag in your templates:

% load appcache_tags %}
<html {% appcache_link %} >
<head>

</head>

<body>

</body>

</html>

 Enable the cache for your project. Refer to Django CACHES configuration.

1.1.4 django CMS integration

See django CMS installation.

1.2 Advanced configuration

While no specific configuration is needed to run html5-appcache, you can customize its behavior for your own
needs with the following parameters:

1.2.1 HTML5_APPCACHE_DISABLE

If you want to keep django-html5-appcache installed but you want to disable it temporarely (for debug pur-
poses, for example), set this parameter to True: it makes the manifest view return a non-caching manifest file and
disables appcache_1ink templatetag. New in version 0.3.0. Defaults: False

1.2.2 HTML5_APPCACHE_ADD_WILDCARD

If True a wildcard entry is added in network section to allow browser to download files not in the CACHE section.
New in version 0.3.0. Defaults: True

4 Chapter 1. Install

http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-CACHES

django-html5-appcache Documentation, Release 0.3.1

1.2.3 HTML5_APPCACHE_CACHE_KEY

Name of the cache key.

Defaults: html5_appcache

1.2.4 HTML5_APPCACHE_CACHE_DURATION

Duration of the cache values.

Default: 86400 seconds

1.2.5 HTML5_APPCACHE_USE_SITEMAP
django-html5-appcache can leverage the sitemap application of django to discover the cacheable urls. If
you want to disable, you must provide a urls list.

Default: True

1.2.6 HTML5_APPCACHE_CACHED_URL

It’s possible to provide a list of urls to include in the manifest file as cached urls, if it’s not discoverable by the django
application (e.g.: it’s not managed by django or not linked to any page).

Default: [1]

1.2.7 HTML5_APPCACHE_NETWORK_URL
You can exclude specific url from being cached by using this parameter. Urls will be excluded by cached urls and set
in the NETWORK section of the manifest.

Default: [1]

1.2.8 HTML5_APPCACHE_FALLBACK_URL

It’s possible to provide a dictionary of urls to be included in the FALLBACK section. Key is the original url, value is
the fallback url.

Default: {}

1.2.9 HTML5_APPCACHE_OVERRIDE_URLCONF

When using django CMS apphooks, you must provide an alternative urlconf for django-html5-appcache to be
able to traverse the application urls, due to way apphooks works. See the django CMS integration section to know
more (WiP)

Default: False

1.2. Advanced configuration 5

django-html5-appcache Documentation, Release 0.3.1

1.2.10 HTML5_APPCACHE_OVERRIDDEN_URLCONF

This is used internally by django-html5-appcache and should remain to its default value.

Default: False

1.3 Changelog

1.3.1 0.3.1 (2013-06-08)

¢ Fix view-generated manifest

1.3.2 0.3.0 (2013-06-06)

Warning: 0.3.0 introduces migrations. Run migrate html5_appcache on upgrade

» Special permissions for management views
» Templatetag to show the chache status and update the manifest (see Web interface)

e HTML5_APPCACHE_DISABLE parameter to disable manifest file (see Advanced configuration)

1.3.3 0.2.2 (2013-06-02)

* Fixes issue with Google Chrome

1.3.4 0.2.0 (2013-06-02)

e Initial release

6 Chapter 1. Install

CHAPTER 2

Usage

2.1 Basic Concepts

django-html5-appcache leverages django cache, test and signals frameworks to explore project pages
and assets and generate an appcache manifest file.

2.1.1 Manifest file generation
The manifest file is generated collecting all the cached urls and exploring them using the test client to gather asset urls
and including them in the manifest itself.

This can be quite resource intensive, so the manifest file is saved in the cache; the view that actually delivers the file
manifest to the browser can thus use the cache to serve it with no performance impact.

The manifest file is generated out-of-band using a django command so you can execute the command manually or in
a cron job. Since 0.3.0 a view is provided, see Web interface

Cache invalidation

Whenever a registered model is saved or deleted (see Enabling caching in your application on how to enable this for
your application), manifest cache is marked as dirty; this has no immediate effect on the manifest file served, as the
oudated copy is still served.

URL discovery
Using sitemap

django-html5-appcache uses the sitemap as a primary mean to discover urls in the web application.
This is a two steps process:
1. get the sitemap and extract the urls declared

2. scrape each url and extract the asset urls

django-html5-appcache Documentation, Release 0.3.1

In the scraping phase, the actual HTML of each page is generated and analyed.

Currently django-html5-appcache extracts data from img, script and link tags. See
AppCacheAssetsFromResponse for more in depth details.

See Markup on how to customize the assets extraction in your markup.

Customizing urls

Additional to the sitemap method above, you can define your own custom url list; in this case, it’s your duty to define
the list of assets in those urls.

2.2 Enabling caching in your application

django-html5-appcache will automatically include your application urls in the manifest file the if you have a
sitemap-enabled application; however, to enable cache invalidation, is strongly advised to explicitly enable appcache
support in your application.

2.2.1 Basic support

For basic appcache support, you must create a appcache . py in your application directory (along models. py file),
write an AppCache class and register it:

from html5_appcache import appcache_registry
from html5_appcache.appcache_base import BaseAppCache

from .models import MyModel, AnotherModel

class MyModelAppCache (BaseAppCache) :
models = (MyModel, AnotherModel)

def signal_connector(self, instance, =**kwargs):
self.manager.reset_manifest ()

appcache_registry.register (MyModelAppCache ())

This code declare support for MyModel and AnotherModel and hooks
MyModelAppCache.signal_connector with post_save and post_delete signals.

Anytime you save or delete an instance of MyModel and AnotherModel cache will be marked as dirty.

2.2.2 Custom urls support

If you don’t have a sitemap or you just want to customize the urls in the manifest file, you can add methods to the
basic AppCache class above:

class MyModelAppCache (BaseAppCache) :
def _get_urls(self, request):
return urls

def _get_assets(self, request):

8 Chapter 2. Usage

django-html5-appcache Documentation, Release 0.3.1

J;éi;urn urls

def _get_network(self, request):
J;éi;urn urls

def _get_fallback(self, request):
1":é1‘:urn urls

e get_urls(self, request): returns a list of urls to be included in the CACHE section of the manifes
file;

e _get_assets(self, request): returns a list of asset urls to be included in the CACHE section of the
manifes file; if you add urls in _get_urls method, you have to return the assets in the above urls in this
method;

e _get_network (self, request): returns a list of urls to be included in the NETWORK section of the
manifes file;

e _get_fallback (self, request): returns a dictionary of urls to be included in the FALLBACK section
of the manifes file; the dictionary key is used as the leftmost url in each manifest row, the value as the rightmost
(i.e: the manifest instruct browser to substitute key url with value url when offline).

request object is passed for convenience

2.2.3 django CMS plugins

See django CMS plugins.

2.3 django CMS

django-html5-appcache supports django CMS out-of-the-box.

django CMS integration delivers support for all the the default plugins; to enable your own plugins see django CMS
plugins below.

2.3.1 Installation
Plugins

To enable, add the following to INSTALLED_APPS:
* html5_appcache.packages.cms
* html5_appcache.packages.filer (if youuse django-filer)

* html5_appcache.packages.cmsplugin_filer (if youuse cmsplugin_filer)

Apphooks

If you use applications hooked to django CMS AppHooks, you have to write the AppCache class; if you use the
sitemap method to discover the urls, you must add conditional urls loading to the main‘‘urls.py*‘.

2.3. django CMS 9

django-html5-appcache Documentation, Release 0.3.1

As the scraping uses the internal testserver to deliver the contents, Apphooks are not hooked so you have to provide
an alternate method to attach the urls.

For this purpose use the following snippet:

if getattr(settings, ’'HTML5_APPCACHE_OVERRIDDEN_URLCONE’, False):
urlpatterns += patterns(’’,
url (r’ “my-url’, include ("my-app.urls")),

)

Where my-url is the url where the apphook is attached to, and my-app.urls is the urlconf of you application. Repeat
for every attached apphook and for every slug they are attached to.

2.3.2 django CMS plugins

To enable cache invalidation for your own plugins, you must create an AppCache class for your plugin models too.
The example below is the implementation of an appcache for django CMS text plugin:

from html5_ appcache import appcache_registry
from html5_appcache.appcache _base import BaseAppCache
from cms.plugins.text.models import Text

class CmsTextAppCache (BaseAppCache) :
models = (Text,)

def signal_connector(self, instance, =**kwargs):

self.manager.reset_manifest ()
appcache_registry.register (CmsTextAppCache ())

2.4 Excluding urls from the cache

Sometimes you don’t want urls to be cached for various reasons (they can pull content from external sites with no way
to invalidate the local cache, or they are just non meant to be available offline).

django-html5-appcache provides different ways to exclude urls from cache to meet as many usecases as pos-
sible.

2.4.1 Configuration

To statically exclude urls from cache or add to the fallback section, use HTML5_APPCACHE_NETWORK_URL and
HTML5_APPCACHE_NETWORK_URL

2.4.2 AppCache class

In the AppCache classes, 1is it possible to override BaseAppCache._get_fallback and
BaseAppCache._get_network to fine-tune the urls in each section of the manifest file.

10 Chapter 2. Usage

django-htmi5-appcache Documentation, Release 0.3.1

2.4.3 Markup
When using sitemap, by default every relative URL is considered to be cached, while external URLSs are not cached.
It’s possible to control the behavior of each url by using custom attributes in your tags.
For each img, script and 1ink tag, you can add data-attributes to control how each referenced url is considered:
* data-appcache="noappcache’: the referenced url is added to the NETWORK section
* data-appcache-fallback=URL: the referenced url is added in the FALLBACK section, with URL as a target

2.5 Web interface

Since 0.3.0 django—html 5-appcache has a small web interface to check the cache status and update the manifest
file.

The appcache_icon templatag show the cache status icon and hooks it to an ajax call that trigger the manifest
update.

2.5.1 Badges

¥ Outdated

Figure 2.1: Outdated cache status badge

«" Up to date

Figure 2.2: Up-to-date cache status badge

2.5.2 Installation
Add the following lines to any template you want the cache status badge to appear:

% load appcache_tags %}

% appcache_link %}

2.5.3 Permissions

Both the view that shows the cache status and the view to update the manifest are subject to specific permissions:
* can_view_cache_status: required to access the view that show the cache status

* can_update_manifest: required to trigger the manifest update

2.5. Web interface 11

django-html5-appcache Documentation, Release 0.3.1

You need to explicitly add these permissions to any user who manages the appcache.

Both the views and the templatetag checks this permissions, so you can actually write your own code to call the views
and your code will still be safe.

2.6 Command line usage

django-html5-appcache define two commands to control the manifest cache:

2.6.1 update_manifest

update_manifest is the command to update the manifest cache.

Run:

$ python manage.py update_manifest

and your manifest file will be updated.

2.6.2 clear_manifest

Mostly a debugging tool, clear_manifest wipe the manifest cache completely.

12 Chapter 2. Usage

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

3.1 Autodoc

class htm15_appcache.appcache_base.AppCacheManager

Main class.

_fetch_url (client, url)
Scrape a single URL and fetches assets

_get_sitemap ()
Pretty ugly method that fetches the current sitemap and parses it to retrieve the list of available urls

_setup_signals ()
Loads the signals for all the models declared in the appcache instances

add_appcache (appcache)
Adds the externally retrieved urls to the internal set.

appcache is a dictionary with cached, network, fallback keys

extract_urls ()
Run through the cached urls and fetches assets by scraping the pages

get_cached urls ()
Create the cached urls set.

Merges the assets, the urls, removes the network urls and the external urls
See BaseAppCache.get_urls (), get_network_urls ()

get_fallback_urls ()
Creates the fallback urls set.

get_manifest (update=False)
Either get the manifest file out of the cache or render it and save in the cache.

13

django-html5-appcache Documentation, Release 0.3.1

get_network_urls ()
Create the network urls set.

* (wildcard entry) is added when ADD_WILDCARD is True (default)

get_urls ()
Retrieves the urls from the sitemap and BaseAppCache.get_urls () of the appcache instances

get_version_timestamp ()
Create the timestamp according to the current time.

It tries to make it unique even for very short timeframes

reset_manifest ()
Clear the cache (if clean)

setup (request, template)
Setup is required wen updating the manifest file

setup_registry ()
Setup the manager bootstrapping the appcache instances

class htm15_appcache.appcache_base.BaseAppCache
Base class for Appcache classes

_add_1language (request, urls)
For django CMS 2.3 we need to manually add language code to the urls returned by the appcache classes

Returns list of urls

_get_assets (request)
override this method to customize asset (images, files, javascripts, stylesheets) urls.

Returns list of urls

_get_fallback (request)
override this method to define fallback urls.

Returns dictionary mapping original urls to fallback

_get_network (request)
override this method to define network (non-cached) urls.

Returns list of urls

_get_urls (request)
override this method to define cached urls.

If you use a sitemap-enabled application, it’s not normally necessary.
Returns list of urls

get_assets (request)
Public method that return assets urls. Do not override, use _get_assets ()

Returns list of urls

get_fallback (request)
Public method that return fallback urls. Do not override, use _get_fallback ()

Returns dictionary mapping original urls to fallback

get_network (request)
Public method that return network (non-cached) urls. Do not override, use _get_network ()

Returns list of urls

14 Chapter 3. Indices and tables

django-html5-appcache Documentation, Release 0.3.1

get_urls (request)
Public method that return cached urls. Do not override, use _get_urls ()

Returns list of urls

signal_connector (instance, **kwargs)
You must override this method in you AppCache class.

class htm15_appcache.middleware.appcache_middleware.AppCacheAssetsFromResponse
Extracts appcache assets from the rendered template.

Currently supports the following tags:

* img: extracts the data in the src attribute

e script: extracts the data in the src attribute

* link: extracts the data in the href attribute if rel==stylesheet
It supports custom data-attribute to exclude assets from caching:

* data-appcache="noappcache’: the referenced url is added to the NETWORK section

* data-appcache-fallback=URL: the referenced url is added in the FALLBACK section, with URL as a

target

handle_img (tag, attrib)
Extract assets from the img tag

handle_1link (fag, attrib)
Extract assets from the link tag (only for stylesheets)

handle_script (tag, attrib)
Extract assets from the script tag

process_response (request, response)

This method is called only if appcache_analyze parameter is attached to the querystring, to avoid

overhead during normal navigation

walk_ tree (free)
Walk the DOM tree

3.1. Autodoc

15

django-html5-appcache Documentation, Release 0.3.1

16 Chapter 3. Indices and tables

Python Module Index

h

html5_appcache.appcache_base, 13
html5_appcache.middleware.appcache_middleware,
15

17

	Install
	Installation
	Advanced configuration
	Changelog

	Usage
	Basic Concepts
	Enabling caching in your application
	django CMS
	Excluding urls from the cache
	Web interface
	Command line usage

	Indices and tables
	Autodoc

	Python Module Index

